Label-free NIR-SERS discrimination and detection of foodborne bacteria by in situ synthesis of Ag colloids
نویسندگان
چکیده
BACKGROUND Rapid detection and discrimination of bacteria for biomedical and food safety applications remain a considerable challenge. We report a label-free near infrared surface-enhanced Raman scattering (NIR-SERS) method for the discrimination of pathogenic bacteria from drinking water. The approach relies on the in situ synthesis of silver nanoparticles (Ag NPs) within the bacterial cell suspensions. RESULTS Pre-treatment of cells with Triton X-100 significantly improved the sensitivity of the assay. Using this method, we were able to discriminate several common pathogenic bacteria such as Escherichia coli, Pseudomonas aeruginosa, Methicillin-resistant Staphylococcus aureus (MRSA) and Listeria spp. A comparison of the SERS spectra allowed for the discrimination of two Listeria species, namely L. monocytogenes and L. innocua. We further report the application of the method to discriminate two MRSA strains from clinical isolates. The complete assay was completed in a span of 5 min. CONCLUSIONS The proposed analytical method proves to be a rapid tool for selective and label-free identification of pathogenic bacterium. Pre-treatment of bacterial cells with Triton X-100 resulted in new features on the SERS spectra, allowing for a successful discrimination of common disease related bacteria including E. coli, P. aeruginosa, Listeria and MRSA. We also demonstrate that the spectral features obtained using in situ synthesis of nanoparticles could be could be used to differentiate two species of listeria. By using L. innocua as a model sample, we found the limit of detection of our assay to be 10(3) CFU/mL. The method can selectively discriminate different bacterial species, and has a potential to be used in the development of point-of-care diagnostics with biomedical and food safety applications.
منابع مشابه
Universal chitosan-assisted synthesis of Ag-including heterostructured nanocrystals for label-free in situ SERS monitoring.
A universal chitosan-assisted method was developed to synthesize various Ag-including heterostructured nanocrystals, in which chelation probably plays a vital role. The as-prepared Ag/Pd heterostructured nanocrystals show outstanding properties when used as bifunctional nanocomposites in label-free in situ SERS monitoring of Pd-catalyzed reaction.
متن کاملSERS Technique for Rapid Screening and Species Identification of E. Coli, Listeria, and Salmonella
Techniques for routine and rapid screening of the presence of foodborne bacteria are needed, and this study reports the feasibility of citrate-reduced silver colloidal SERS for identifying E. coli, Listeria, and Salmonella. Relative standard deviation (RSD) of SERS spectra from silver colloidal suspensions and ratios of P-O SERS peaks from small molecule (K3PO4) were used to assess the reproduc...
متن کاملA rapid SERS method for label-free bacteria detection using polyethylenimine-modified Au-coated magnetic microspheres and Au@Ag nanoparticles.
A rapid, sensitive, and label-free SERS detection method for bacteria pathogens is reported for the first time. The method, which is based on the combination of polyethylenimine (PEI)-modified Au-coated magnetic microspheres (Fe3O4@Au@PEI) and concentrated Au@Ag nanoparticles (NPs), was named the capture-enrichment-enhancement (CEE) three-step method. A novel Fe3O4@Au microsphere with monodispe...
متن کاملRapid single-cell detection and identification of pathogens by using surface-enhanced Raman spectroscopy.
For the successful treatment of infections, real-time analysis and enhanced multiplex capacity, sensitivity and cost-effectiveness of the developed detection method are critical. In this work, surface-enhanced Raman scattering (SERS) was employed with the final aim of identification and discrimination of pathogenic bacteria, based on their detected SERS fingerprint at the single-cell level. Sev...
متن کاملDetection and differentiation of foodborne pathogenic bacteria in mung bean sprouts using field deployable label-free SERS devices.
Vancomycin functionalized silver nanorod arrays substrates were used to obtain the surface enhanced Raman scattering (SERS) signals of six foodborne pathogenic bacteria in mung bean sprouts samples using both a portable and a handheld Raman system. The silver nanorod arrays substrates were optimized to facilitate quantitative, rapid, and sensitive detection of Salmonella enterica serotype Anatu...
متن کامل